今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思

大千世界 110 0

  在挑战写语文作文后,AI 现在又盯上了高考英语。

  结果好家伙,今年高考英语卷(全国甲卷)一上手,就拿了 134 分。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第1张图片-大千世界


  而且不是偶然的超常发挥。

  在 2018-2021 年的 10 套真题测试中,AI 的分数都在 125 分以上,最高纪录为 138.5 分,听力和阅读理解还拿过满分。

  这就是由 CMU 学者提出的,高考英语测试 AI 系统 Qin。

  它的参数量只有 GPT-3 的 16 分之一,平均成绩却比 GPT-3 高出 15 分。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第2张图片-大千世界


  其背后的秘诀名叫重构预训练 (reStructured Pre-training),是作者提出的一种新学习范式。

  具体来看,就是把维基百科、YouTube 等平台的信息重新提取重构,再喂给 AI 进行训练,由此让 AI 具有更强的泛化能力。

  两位学者用足足 100 多页的论文,深入解释了这一新范式。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第3张图片-大千世界


  那么,这一范式到底讲了什么?

  我们来深扒一下~

  什么是重构预训练?

  论文题目很简单,就叫 reStructured Pre-training(重构预训练,RST)。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第4张图片-大千世界


  核心观点凝练来说就是一句话,要重视数据啊!

  作者认为,这个世界上有价值的信息无处不在,而目前的 AI 系统并没有充分利用数据中的信息。

  比如像维基百科,Github,里面包含了各种可以供模型学习的信号:实体,关系,文本摘要,文本主题等。这些信号之前由于技术瓶颈都没有被考虑。

  所以,作者在本文中提出了一种方法,可以用神经网络统一地存储和访问包含各种类型信息的数据。

  他们以信号为单位、结构化地表示数据,这很类似于数据科学里我们常常将数据构造成表或 JSON 格式,然后通过专门的语言(如 SQL)来检索所需的信息。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第5张图片-大千世界


  具体来看,这里的信号,其实就是指数据中的有用信息。

  比如在“莫扎特生于萨尔茨堡”这句话中,“莫扎特”、“萨尔茨堡”就是信号。

  然后,就需要在各种平台上挖掘数据、提取信号,作者把这个过程比作了从矿山里寻宝。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第6张图片-大千世界


  接下来,利用 prompt 方法,就能将这些来自不同地方的信号统一成一种形式。

  最后,再将这些重组的数据集成并存储到语言模型中。

  这样一来,该研究就能从 10 个数据源中,统一 26 种不同类型的信号,让模型获得很强的泛化能力。

  结果表明,在多个数据集中,RST-T、RST-A 零样本学习的表现,都优于 GPT-3 的少样本学习性能。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第7张图片-大千世界


  而为了更进一步测试新方法的表现,作者还想到了让 AI 做高考题的方法。

  他们表示,现在很多工作方法走的都是汉化 GPT-3 的思路,在评估的应用场景上也是跟随 OpenAI、DeepMind。

  比如 GLUE 测评基准、蛋白质折叠评分等。

  基于对当下 AI 模型发展的观察,作者认为可以开辟出一条新的赛道试试,所以就想到了用高考给 AI 练练手。

  他们找来了前后几年共 10 套试卷进行标注,请高中老师来进行打分。

  像听力 / 识图理解这样的题目,还找来机器视觉、语音识别领域的学者帮忙。

  最终,炼出了这套高考英语 AI 模型,也可以叫她为 Qin。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第8张图片-大千世界


  从测试结果可以看到,Qin 绝对是学霸级别了,10 套卷子成绩都高于 T0pp 和 GPT-3。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第9张图片-大千世界


  此外,作者还提出了高考 benchmark。

  他们觉得当下很多评价基准的任务都很单一,大多没有实用价值,和人类情况对比也比较困难。

  而高考题目既涵盖了各种各样的知识点,还直接有人类分数来做比对,可以说是一箭双雕了。

  NLP 的第五范式?

  如果从更深层次来看,作者认为,重构预训练或许会成为 NLP 的一种新范式,即把预训练 / 微调过程视为数据存储 / 访问过程。

  此前,作者将 NLP 的发展总结成了 4 种范式:

  P1. 非神经网络时代的完全监督学习 (Fully Supervised Learning, Non-Neural Network)

  P2. 基于神经网络的完全监督学习 (Fully Supervised Learning, Neural Network)

  P3. 预训练,精调范式 (Pre-train, Fine-tune)

  P4. 预训练,提示,预测范式(Pre-train, Prompt, Predict)

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第10张图片-大千世界


  但是基于当下对 NLP 发展的观察,他们认为或许之后可以以一种 data-centric 的方式来看待问题。

  也就是,预训 / 精调、few-shot / zero-shot 等概念的差异化会更加模糊,核心只关注一个点 ——

  有价值的信息有多少、能利用多少。

  此外,他们还提出了一个 NLP 进化假说。

  其中的核心思想是,技术发展方向总是顺着这样的 —— 做更少的事实现更好、更通用的系统。

  作者认为,NLP 经历了特征工程、架构工程、目标工程、提示工程,当下正在朝着数据工程方向发展。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第11张图片-大千世界


  复旦武大校友打造

  本篇论文的一作为 Weizhe Yuan。

  她本科毕业于武汉大学,后赴卡内基梅隆大学读研,学习数据科学专业。

  研究方向集中在 NLP 任务的文本生成和评估。

  去年,她被 AAAI 2022、NeurIPS 2021 分别接收了一篇论文,还获得了 ACL 2021 Best Demo Paper Award。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第12张图片-大千世界


  论文的通讯作者为卡内基梅隆大学语言技术研究所(LTI)的博士后研究员刘鹏飞。

  他于 2019 年在复旦大学计算机系获得博士学位,师从邱锡鹏教授、黄萱菁教授。

  研究兴趣包括 NLP 模型可解释性、迁移学习、任务学习等。

  博士期间,他包揽了各种计算机领域的奖学金,包括 IBM 博士奖学金、微软学者奖学金、腾讯人工智能奖学金、百度奖学金。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第13张图片-大千世界


  One More Thing

  值得一提的是,刘鹏飞在和我们介绍这项工作时,直言“最初我们就没打算拿去投稿”。

  这是因为他们不想让会议论文的格式限制了构思论文的想象力。

  我们决定把这篇论文当作一个故事来讲,并给“读者”一种看电影的体验。

  这也是为什么我们在第三页,设置了一个“观影模式“的全景图。

  就是为了带着大家去了解 NLP 发展的历史,以及我们所展望的未来是怎样的,让每一个研究者都能有一定的代入感,感受到自己去带领着预训练语言模型们 (PLMs) 通过矿山寻宝走向更好明天的一个过程。

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第14张图片-大千世界


  论文结尾,还藏了一些惊喜彩蛋。

  比如 PLMs 主题表情包:

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第15张图片-大千世界


  还有结尾的插画:

  

今年高考英语 AI 得分 134,复旦武大校友这项研究有点意思-第16张图片-大千世界


  这么看,100 多页的论文读起来也不会累了~

  论文地址:

  https://arxiv.org/abs/2206.11147


标签: 英语

抱歉,评论功能暂时关闭!