登上 Nature 封面的“首个室温超导体”重磅论文,突然被撤下了!
室温超导体的发现,不仅加速了超导磁体相关如粒子对撞机、核聚变等研究的进度,还可能真正降低我们平时生活中的电力传输损耗。
但论文公开后,质疑声浪越来越大:最初只是有人探究实验数据的合理性,到后面连实验的真实性也开始被怀疑。一位万引学者尝试复现了实验 6 次,全部以失败告终。
BUT,更令人意外的是 9 位作者的态度 ——
他们一致反对外界的质疑,认为自己的论文是“经过实验和理论验证”的结果。
直到这篇论文被 Nature 主动撤稿,他们也完全不同意“论文涉嫌操纵数据”这一理由。
所以,这项研究的核心争议点究竟是什么?
证明超导现象的关键数据“存在疑云”
先来看看 Nature 给出的撤稿理由:
在一些关键的数据处理步骤中,(这篇论文)使用了一种非标准化的、用户自定义的程序。
具体而言,这个程序指的是论文中用来处理原始数据、以生成磁化率图的背景减法(background subtractions,用于处理嘈杂背景信号的方法),处理后的数据呈现在图 2a 和补充材料图 7d 中。
但论文却没有针对这种背景减法进行解释,因此数据有效性也受到质疑,我们认为这会削弱外界对磁化率数据的信心。
其中,磁化率是判断材料是否进入超导态的重要依据之一。
(材料进入超导态的两个依据:磁化率在某种条件下突变为-1,具备完全抗磁性;电阻突然消失,具备绝对 0 电阻)
简单来说,Nature 认为论文作者在处理非常关键的磁化率数据时,采用了一种不寻常的方法,却没有解释为什么要用这个方法。
被质疑的两张图片长这样:
△ 图 2a 和图 7d
乍一看似乎没什么问题:图 2a 表示在不同压力的情况下,这种材料在达到不同特定温度时,磁化率均会出现突变,意味着进入了超导态;图 7d 是其他压力下的磁化率变化。
但如果对部分数据进行简单的处理,就会发现一些奇怪的地方。
例如,对一组实验数据点求差分(difference,前一个数据减去后一个数据,相当于求导)。正常情况下,经过差分处理的数据,通常会呈现出一个无规律的形状,因为噪声是无规律的。
然而对这篇论文的实验数据求差分后,得到的形状是这样的(几乎全部呈现为 0.16555 的整数倍):
△ 点的间距非常有规律
再去掉差分后,数据形状与原来相比有了翻天覆地的变化:
△ 与图 a 和 b 相比,看起来完全不一样了
尽管作者们表示,这是他们为了去除背景噪音进行的操作,但 Nature 却认为“这种方法并不具有说服力”。
除了 Nature 以外,研发出第一个超导氢化物的马普所实验物理学家 Mikhail Eremets,还尝试对这次实验进行了复现。
然而他复现了 6 次,全部都以失败告终(也与论文作者不愿意透露材料细节有关,复现材料的具体占比与论文可能有出入)。
投稿仅 2 个月就登上 Nature 封面
这篇引起争议的论文,据称发现了人类第一个室温超导体。
这是一种氢-硫-碳组成的材料,在尖对尖钻石产生的极大压力下产生 15℃左右的超导现象。
具体来说,论文将两种氢化物混合在一起,然后在超高压下让整个混合物重新组合。
他们选择了硫化氢(一种臭鸡蛋气味气体)和甲烷(天然气主要成分),将这两种物质与铂电极一起放在金刚石砧中。
金刚石砧是两个“尖对尖”金刚石,在二者之间可以产生巨大的压力,可以达到几百万个大气压,当压力超过 4 万个大气压时,研究人员用绿色激光照射数小时,破坏硫-硫键,从而形成硫-氢化合物。
研究发现,当压力到达到 267 万个大气压时,只需把样品降低至 15°C,就能看到电阻消失,这也是材料进入超导态的另一个重要证据(还有一个是磁化率)。
这篇论文发出来后,当时在学术界引起了巨大轰动。
要知道,低温条件一直是限制超导体应用的巨大阻碍。
直到 1987 年,美籍华裔物理学家朱经武发现了液氮(77K,约-196℃)温区的“高温超导体”钇钡铜氧,超导体才开始被广泛应用于磁悬浮、超导计算机、核磁共振成像、手机信号基站等领域。
△ 完全抗磁性可用于磁悬浮
不过无需额外冷却的室温超导体,一直是科学家们的终极追求。(注意在超导中,室温比“高温”的温度要高)
所以尽管这种新材料需要极高压条件实现超导态(大约是地球核心的 75%)、实际应用价值有限,却仍然是超导界的“里程碑事件”。
论文一经投出,就被 Nature 接收,仅 2 个月后直接刊登上封面。
研究成果还入选了 2020 年《物理世界》十大突破事件、2020 年 Science 十大突破事件。
△ 图源 Science 2020 年度十大突破
截至被撤稿前,它的被引用次数已经有 365 次。
凭借该研究,论文作者们(来自罗切斯特大学、英特尔公司和内华达大学拉斯维加斯分校)也拿到了很多重磅奖项,又以两位通讯作者为代表。
通讯作者之一兰加・迪亚斯 (Ranga P.Dias),是罗切斯特大学物理系助理教授。凭借室温超导体,他被《时代》杂志评选为全球 100 位最具影响力创新者、获得美国国家科学基金会颁发的 CAREER 奖。
通讯作者之二阿什坎・萨拉玛特 (Ashkan Salamat),内达华大学拉斯维加斯分校助理教授。从他的主页来看,近两年大部分学术新闻报道,都集中在这篇室温超导论文上。
△ 迪亚斯(左)和萨拉玛特(右)
值得一提的是,迪亚斯和萨拉玛特已经为此成立公司,基于现有研究成果来开发商用室温超导体。
然而,发出后不到 2 个月,这篇论文就陷入了造假舆论风波,随着时间推移非但没有解除,反而引来了更多学界人士的质疑。
发表两年争议不断
如果浅看一下这篇论文的主页,会发现它早在发布两个月后,就更新过一次内容。
然而,随着更多细节被披露,论文的争议声却越来越大。2021 年 8 月 25 日,核心争议点出现:关于磁化率数据的问题。
在这样的声浪下,Nature 的论文主页上接连出现了“三连警告”,并正式于今年 9 月 26 日撤稿论文。
这中间究竟发生了什么?
最先站出来质疑的核心人物,是一位名叫豪尔赫・赫西 (Jorge Hirsch)的加州大学圣迭戈分校理论物理学家。
学术圈衡量学者影响力的重要指标 h 指数,就是他提出来的。
论文发表后,赫西第一时间向团队申请查看原始数据,但一再遭到拒绝。
对此通讯作者迪亚斯表示,当时研究成果正在申请专利,律师要求数据暂时保密。
这并未让赫西停下质疑的脚步。
2021 年,赫西针对这种超导体的完全抗磁性、磁化率等问题提出质疑,将自己的观点、验证数据的过程、中间遇到了哪些阻碍都写成论文发表在 arXiv、Physica C 上,很快引起轩然大波。
此时,一直没有正面回应质疑的迪亚斯团队,终于在 2021 年 11 月于 arXiv 上发表了论文的原始数据和背景信号处理方法(这些内容此前在论文及补充材料中都没有解释)。
BUT,研究团队遭受的质疑却更多了。
一方面是研究态度上,康奈尔大学量子材料物理学家 Brad Ramshaw 就表示,这意味该研究从原始数据到公开数据的过程,都非常不透明。
另一方面是公开的数据本身,赫西在 arXiv 上又发表了几篇文章,声称迪亚斯团队用多项式曲线拟合数据“是一种捏造”。
由于言辞过于激烈,题目直指室温超导体或是一场科学骗局,以至于 arXiv、Physica C 接连删除了相关文章,他也因此被 arXiv 禁言,今年 2 月起暂时无法发表文章。
他还向罗切斯特大学投诉迪亚斯团队学术不端,但学校表示两次调查中都没有发现证据。
就在这个节骨眼上,事情迎来了关键转折,日内瓦大学凝聚态物理学家 Dirk van der Marel 也出手了。
他和赫西一起发布了新文章,再次强调室温超导体论文中的一些数据是经过人为处理的。
文章发出不久,便传来 Nature 撤稿处理的消息,Van der Marel 表示这让他感到鼓舞:
很高兴,不只是我们觉得它有问题。
(当然,赫西觉得仅仅撤稿还不够,因为这根本不能体现迪亚斯团队学术不端的事实)
与两位“打假人”相反,研究团队却根本不认为自己的成果是有问题的。
通讯作者之一迪亚斯表示,他们计划在不删减任何背景信息的情况下,将论文重新提交给 Nature。
通讯作者之二萨拉玛特则指出,撤稿的关键因素在于磁化率数据的问题,但零电阻数据是没问题的,它才是判断高压领域超导成果的主要证据。他还补充称,赫西和 Van der Marel 都不是高压物理学家:
我认为他们的一些行为已经上升到了人身攻击,我们不会让别人给自己泼脏水的。
萨拉玛特还放话,欢迎大家来他们实验室观摩室温超导体的研究方法,在 7 月份他们刚刚发布了一个复刻版。
(但这项成果的独立性也遭到了质疑,因为新成果的作者和此前 Nature 论文作者团队高度重合……)
One More Thing
常温超导体的通讯作者迪亚斯,也是首个金属氢成果的第一作者。
此前有研究认为,金属氢很可能是室温超导体材料之一,但这种材料必须在极端高压下合成。
2017 年,Science 报道了来自哈佛大学艾萨克・席维拉团队的成果,迪亚斯是团队成员之一。
实验室将氢气样本冷却到了略高于绝对零度的温度,还是在极高压条件下,用金刚石对氢气进行压缩,成功获得了一小块金属氢,这块金属氢样本被保存在两块微小的金刚石之间。
然而,论文发表后,实验室却称由于操作失误,该金属氢样本已损毁或消失。
因此也有不少学者怀疑这块金属氢是否真的存在过。
参考链接:
[1]https://www.science.org/content/article/something-seriously-wrong-room-temperature-superconductivity-study-retracted
[2]https://news.ycombinator.com/item?id=32993556
[3]https://www.nature.com/articles/s41586-020-2801-z
[4]https://mp.weixin.qq.com/s/TJQ1WCM2vsKeAx2k20FA7g
[5]https://arxiv.org/pdf/2201.07686.pdf
[6]https://www.science.org/content/article/breakthrough-or-bust-claim-room-temperature-superconductivity-draws-fire